Notit

Uzay

Düzensiz Genç Galaksiler Nasıl Büyür ve Olgunlaşırlar?

[Science Daily yazısından çevrilmiş ve düzenlenmiştir]
Tarih: 29.08.2021
Yazar: Hatice Eflatun
Ortalama Okuma Süresi: 3 dakika

İsveç’teki Lund Üniversitesi’ndeki bir araştırma ekibi, bir süper bilgisayar simülasyonu kullanarak, 13,8 milyar yıllık bir süre boyunca bir galaksinin gelişimini takip etmeyi başardı. Çalışma, yıldızlararası ön çarpışmalar nedeniyle genç ve kaotik gökadaların zamanla Samanyolu gibi sarmal galaksilere nasıl olgunlaştığını gösteriyor.

13,8 milyar yıl önceki Büyük Patlama’dan kısa bir süre sonra, Evren asi bir yerdi. Galaksiler sürekli çarpıştı. Devasa gaz bulutlarının içinde muazzam bir hızla yıldızlar oluştu. Bununla birlikte, birkaç milyar yıllık galaksiler arası kaostan sonra, asi, embriyonik galaksiler daha istikrarlı hale geldi ve zamanla iyi düzenlenmiş sarmal galaksilere dönüştü. Bu gelişmelerin kesin seyri, uzun zamandır dünya astronomları için bir gizem olmuştur. Ancak, Monthly Notices of the Royal Astronomical Society’de yayınlanan yeni bir çalışmada, araştırmacılar konuya bir noktaya kadar açıklık getirmeyi başardılar.

Araştırmacıların Söyledikleri Araştırmaya Işık Tutuyor

Lund Üniversitesi’nden astronomi araştırmacısı Oscar Agertz, “Bir süper bilgisayar kullanarak, Büyük Patlama’dan bu yana bir galaksinin gelişiminin ve genç kaotik galaksilerin nasıl düzenli sarmallara dönüştüğünün ayrıntılı bir resmini sunan yüksek çözünürlüklü bir simülasyon oluşturduk” diyor.

Oscar Agertz ve Florent Renaud liderliğindeki gökbilimciler, çalışmada başlangıç ​​noktası olarak Samanyolu’nun yıldızlarını kullanıyor. Yıldızlar, uzak dönemler ve oluştukları ortam hakkındaki sırları ifşa eden zaman kapsülleri görevi görürler. Çeşitli kimyasal elementlerin konumları, hızları ve miktarları bu nedenle bilgisayar simülasyonlarının yardımıyla kendi galaksimizin nasıl oluştuğunu anlamamıza yardımcı olabilir.

“İki büyük gökada çarpıştığında, muazzam yıldız oluşturan gaz akışı nedeniyle eskisinin etrafında yeni bir disk oluşturulabileceğini keşfettik. Simülasyonumuz, eski ve yeni disklerin birkaç milyar yıllık bir süre içinde yavaş yavaş birleştiğini gösteriyor. Lund Üniversitesi’nde astronomi araştırmacısı Florent Renaud, “Bu, yalnızca kararlı bir sarmal gökadayla değil, aynı zamanda Samanyolu’ndakilere benzer yıldız popülasyonlarıyla da sonuçlanan bir şey” diyor.

Yeni bulgular, gökbilimcilerin Samanyolu’nun mevcut ve gelecekteki haritalarını yorumlamalarına yardımcı olacak. Çalışma, ana odak noktasının büyük gökada çarpışmaları arasındaki etkileşim ve sarmal gökada disklerinin nasıl oluştuğu üzerine olacağı araştırma için yeni bir yöne işaret ediyor. Lund’daki araştırma ekibi, araştırma altyapısı PRACE (Avrupa’da Gelişmiş Bilgi İşlem Ortaklığı) ile işbirliği içinde yeni süper bilgisayar simülasyonlarına şimdiden başladı.

Oscar Agertz, “Mevcut çalışma ve yeni bilgisayar simülasyonlarımızla, Samanyolu’nun Evrenin başlangıcından bu yana büyüleyici yaşamını daha iyi anlayabileceğimiz anlamına gelen pek çok bilgi üreteceğiz.” diyor.

 

Kaynakça & İleri Okuma

Çeviri | Scıence Daıly

Başlık Görseli | Pıxabay

Düzensiz Genç Galaksiler Nasıl Büyür ve Olgunlaşırlar? Read More »

Jüpiter’in ‘Enerji Krizinin’ Ardındaki Sır Açıklandı

[Science Daily yazısından çevrilmiş ve düzenlenmiştir.]
Tarih: 21.08.2021
Yazar: Hatice Eflatun
Ortalama kuma Süresi: 6 dakika

Nature dergisinde yayınlanan araştırma, Jüpiter’in yıllardır gökbilimcilerin kafasını karıştıran ‘enerji krizinin’ çözümünü ortaya koydu. 

Leicester Üniversitesi’ndeki uzay bilimciler, Jüpiter’in atmosferik ısınmasının ardındaki mekanizmayı ortaya çıkarmak için Japon Uzay Ajansı (JAXA), Boston Üniversitesi, NASA’nın Goddard Uzay Uçuş Merkezi ve Ulusal Bilgi ve İletişim Teknolojileri Enstitüsü’nden (NICT) meslektaşlarıyla birlikte çalıştı.

Hawai’deki Keck Gözlemevi’nden gelen verileri kullanarak,  gaz devinin üst atmosferinin en ayrıntılı ancak küresel haritasını oluşturdular ve ilk kez Jüpiter’in güçlü auroralarının gezegen çapında ısıtma sağlamaktan sorumlu olduğunu doğruladılar.

Dr. James O’Donoghue, JAXA’da araştırmacıdır, doktorasını Leicester’da tamamlamıştır, araştırma makalesinin baş yazarıdır. Dedi ki:

“İlk olarak Leicester Üniversitesi’nde Jüpiter’in en üst atmosferinin küresel ısı haritasını oluşturmaya başladık. Sinyal, o zamanlar Jüpiter’in kutup bölgelerinin dışında herhangi bir şeyi ortaya çıkaracak kadar parlak değildi, Ancak bu çalışmadan öğrenilen derslerle, birkaç yıl sonra Dünya’daki en büyük, en rekabetçi teleskoplardan birinde zaman sağlamayı başardık.

“Keck teleskobuyla ayrıntılı sıcaklık haritaları ürettik. Önceki çalışmalardan beklendiği gibi, aurora içinde sıcaklıkların çok yüksek başladığını bulduk. Şimdi Jüpiter’in aurorasının, gezegenin alanının %10’undan daha azını kaplamasına rağmen, her şeyi ısıtıyor gibi göründüğünü gözlemleyebiliyoruz.”

Dr. Tom Stallard ve Dr. Henrik Melin, Leicester Üniversitesi Fizik ve Astronomi Okulu’nun bir parçasıdır. Dr. Stallard ekledi:

“Güneş sistemimizdeki her Dev Gezegenin tepesindeki ince atmosferde çok uzun süredir devam eden bir bilmece var. Son 50 yılda, her Jüpiter uzay görevinde, yer tabanlı gözlemlerle birlikte, sürekli olarak ekvator sıcaklıklarını çok yüksek ölçtük.

“Bu ‘enerji krizi’ uzun süredir devam eden bir sorundur – modeller, auroradan ısının nasıl aktığını doğru bir şekilde modelleyemiyor mu, yoksa ekvator yakınında bilinmeyen başka bir ısı kaynağı mı var?

“Bu makale, bu bölgeyi nasıl daha önce görülmemiş ayrıntılarla haritalandırdığımızı açıklıyor ve Jüpiter’de ekvatoral ısıtmanın doğrudan auroral ısıtma ile ilişkili olduğunu gösteriyor.”

Araştırmacıların Söyledikleri Doğrultusunda Araştırmayı Açıklayalım

Aurora, yüklü parçacıklar bir gezegenin manyetik alanına yakalandığında meydana gelir. Işık ve enerjiyi serbest bırakmak için atmosferdeki atomlara ve moleküllere çarparak gezegenin manyetik kutuplarına doğru alan çizgileri boyunca spiraller çizerler.

Dünya’da, Aurora Borealis ve Australis’i oluşturan karakteristik ışık gösterisine yol açarlar. Jüpiter’de, volkanik uydusu Io’dan fışkıran malzeme, Güneş Sistemi’ndeki en güçlü auroraya ve gezegenin kutup bölgelerinde muazzam ısınmaya yol açar.

Jovian auroraları uzun zamandır gezegenin atmosferini ısıtmak için başlıca aday olmasına rağmen, gözlemler şimdiye kadar bunu doğrulayamamış veya inkar edememişti.

Üst atmosferik sıcaklığın önceki haritaları, yalnızca birkaç pikselden oluşan görüntüler kullanılarak oluşturulmuştur. Bu, gezegen genelinde sıcaklığın nasıl değişebileceğini görmek için yeterli bir çözünürlük değil fakat ekstra ısının kaynağına dair ipucu veriyor.

Araştırmacılar, farklı uzamsal çözünürlüklerde atmosferik sıcaklığın beş haritasını oluşturdular; en yüksek çözünürlüklü harita, iki derece boylam ‘yüksek’ ve iki derece enlem ‘geniş’ kareler için ortalama sıcaklık ölçümünü gösteriyor.

Ekip 10.000’den fazla bireysel veri noktasını taradı, yalnızca yüzde beşten daha az bir belirsizliğe sahip noktaları haritaladı.

Gaz devlerinin atmosferlerinin modelleri, ekvatordan kutba doğru çekilen ve bu kutup bölgelerinde alt atmosferde biriken ısı enerjisiyle dev bir buzdolabı gibi çalıştıklarını öne sürüyor.

Bu yeni bulgular, hızlı değişen auroraların kutup akıntısına karşı enerji dalgalarını yönlendirebileceğini ve ısının ekvatora ulaşmasını sağlayabileceğini göstermektedir.

Gözlemler ayrıca, ekvatora doğru yayılan sınırlı bir ısı dalgası olarak yorumlanabilecek, ısı transferini yönlendiren sürecin kanıtı olarak yorumlanabilecek, alt-auroral bölgede lokalize bir ısıtma bölgesi gösterdi.

 

Kaynakça & İleri Okuma

Çeviri | ScIence DaIly

Başlık Görseli | NASA

Jüpiter’in ‘Enerji Krizinin’ Ardındaki Sır Açıklandı Read More »

Oyuk Açan Yumuşak Uzay Robotu

[Science Focus yazısından çevrilmiş ve düzenlenmiştir.]
Tarih: 06.07.2021
Yazar: Hatice Eflatun
Ortalama Okuma Süresi: 5 dakika

Araştırmacılar, NASA’nın uzaya göndermek istediği bir robot geliştirmek için hem bitkilerin köklerinden hem de yuva yapan bir kum ahtapotlarından ilham aldı.

Robotlar, okyanusun derinliklerinden dağ zirvelerine ve hatta uzaya kadar dünyayı keşfetmemize yardımcı oldu. Ancak araştırmacılar biyolojik emsallerinden daha iyi yüzebilen, koşabilen ve uçabilen robotlar üretirken, mühendisler bir hayvan kadar iyi yuva yapabilen bir robot yapmak için çabaladılar.

Kaliforniya Üniversitesi ve Georgia Teknoloji Enstitüsü’ndeki araştırmacılar, yeraltı dünyasında gezinebilecek bir cihaz tasarlamak için doğadan ilham almaya karar verdiler.

Ekip, yerdeki dirençli kuvvetlerin üstesinden gelmek için mekanik bir matkap kullanmak yerine fizikle çalışan esnek, yumuşak bir robot geliştirdi.

Yumuşak robot, kumlu bir arazide çeşitli şekillerde hareket eder. Düz aşağı hareket etmek için robot, etrafındaki malzemeyi yolundan dışarı itmek için uzanan bir ucu ile bir bitkinin kök sistemi gibi davranır. Ekip, her iki taraftaki ‘tendonları’ kullanarak botun hareketlerini kontrol edebilir ve bunlarla yönlendirme, robotun dolambaçlı yollar boyunca keskin dönüşler yapmasını sağlar.

Robot, zeminde yatay olarak hareket etmek için oyuk açan kum ahtapotunu taklit eder: kumun direncini yenmek ve A’dan B’ye gitmek için ucundan asimetrik yönlerde hava üfler. Bu, bir sıvı içindeki parçacıklara çok benzer şekilde, katı kum parçacıklarını hareket halinde tuttuğu için havayla akışkanlaştırma olarak adlandırılır.

“Bir gaz veya sıvının aksine, bir tanecikli ortam aracılığıyla yatay olarak hareket eden simetrik bir nesne kalkar. Kumu yukarı ve dışarı itmek, onu sıkıştırmaktan daha kolaydır.” Diyor araştırmanın baş yazarı Dr. Nicholas Naclerio. “Sonuç olarak, yalnızca ileri hava akışıyla robotumuz yeniden ortaya çıkıyor. Bu kaldırma kuvveti, robota aşağı doğru bir hava akımı eklenerek karşılanır. Hem ileri hem de aşağı hava akışının asimetrik kombinasyonu, kontrol edilebilir yatay oyuk açmayı mümkün kılar.” diye de ekliyor.

Ekip tarafından bu yeni araştırma için geliştirilen robotun çapı sadece 6 cm olmasına ve 1 m’ye kadar uzayabilen bir ucu olmasına rağmen, araştırmacılar 2 mm kadar küçük ve 70 m kadar büyük botlar tasarladıklarını söylüyorlar.

Uç uzatma ve hava akışkanlaştırma teknolojisinin kombinasyonu kumlu bir ortamda test edildi, ancak ekip şimdi NASA ile Ay’ın yüzeyinde yuva yapabilen veya Jüpiter’in uydusu Enceladus gibi uzak cisimleri keşfetmeye gönderilebilen bir robot geliştirmek için çalışıyor.

Naclerio, “Yumuşak robotlar uzayda kanıtlanmamıştır, ancak küçük bir sıkıştırılmış gaz tankı, bir kimyasal gaz jeneratörü veya yerel ortamdan gaz toplayarak çalıştırılabileceğine inanıyoruz” dedi.

Hava ile akışkanlaştırma sadece kum gibi kuru granüler ortamlarda çalışır. Bununla birlikte, suyla akışkanlaştırma, nemli veya kir ve kil gibi yapışkan ortamlarda çalışır.

Uç uzantısı, diğer ortamları keşfetmek için matkaplar gibi diğer mekanizmalarla da kullanılabilir.

 

KAYNAKÇA & İLERİ OKUMA

Çeviri | SCIENCE FOCUS

Başlık Görseli | UC Santa Barbara

Oyuk Açan Yumuşak Uzay Robotu Read More »

Dünya Farklı Sistemler Tarafından Tespit Edilmiş Olabilir!

[Science Focus yazısından çevrilmiş ve düzenlenmiştir.]
Tarih: 26.06.2021
Yazar: Hatice Eflatun
Ortalama Okuma Süresi: 4 dakika

Dünya’daki gökbilimciler, uzak yıldızların yörüngesindeki gezegenlerin geçişini izleyerek yabancı dünyaları arayabilirler. Ancak bilim adamları şimdi bize doğru bakabilecek 2.034 tane yakın yıldız sistemi belirlediler. Bunlardan 1.715’i, insan uygarlığının yaklaşık 5.000 yıl önce gelişmesinden bu yana Dünya’yı görmüş olabilir. Önümüzdeki 5.000 yıl içinde 319’u daha bizi görmesi muhtemel.

Astronomi profesörü ve Cornell’deki Carl Sagan Enstitüsü’nün müdürü Dr. Lisa Kaltenegger, Amerikan Doğa Tarihi Müzesi’nden Dr. Jackie Faherty ile birlikte uzaylı uygarlıkların, bizim dış gezegenlerde aradığımız gibi Dünya’da yaşam arayıp arayamayacağını bilmek istediler. Dünya tabanlı gökbilimcilerin kullandığı yöntem teleskopları uzak yıldızlara hedeflemeyi içeriyor. Yıldızdan gelen ışık karakteristik bir şekilde sönük kalırsa yörüngesinin bir parçası olarak bir gezegenin yıldızın önünden transit geçiş yaptığını gösterir.

Kaltenegger ve Faherty, hangi yıldızların Dünya Geçiş Bölgesi’ne (ETZ) ne kadar süreyle girip çıktığını belirlemek için Avrupa Uzay Ajansı’nın Gaia gözlemevinden gelen verileri kullandı. ETZ, dünya dışı bir gözlemcinin, Güneş’in önünden geçtiğini görerek Dünya’yı tespit edebildiği gökyüzü bölgesidir.

Kaltenegger “Güneş’in ışığını engellediği için hangi yıldızların Dünya’yı görmek için doğru bakış açısına sahip olduğunu bilmek istedik. Ve yıldızlar dinamik kozmosumuzda hareket ettiğinden, bu bakış açısı kazanılır ve kaybedilir.” dedi.

İncelenen 10.000 yıllık süre boyunca (5.000 yıl öncesinden 5.000 yıl sonrasına kadar), araştırmacılar ETZ’den geçen 2.034 yıldız sistemi belirlediler. Bunlardan 117’si Güneş’in 100 ışıkyılı içinde yer alır. Bunların 75’i, insanların yaklaşık 100 yıl önce uzaya ticari radyo istasyonlarını yayınlamaya başlamasından bu yana ETZ’den geçmiştir.

Faherty, “Gaia bize Samanyolu’nun kesin bir haritasını sağladı. Zamanda geriye ve ileriye bakmamıza ve yıldızların nerede bulunduğunu ve nereye gittiklerini görmemize izin verdi” dedi.

Peki Örnekleri Neler?

Örneğin, 11 ışık yılı uzaklıkta konumlanmış olan Ross 128 sistemi, yaşanabilir bölgesinde Dünya’nın 1,8 katı büyüklüğünde bir gezegene sahiptir. Bu gezegenin sakinleri,  Dünya’nın 3.057 yıl önce Güneş’ten geçişini görmek için doğru yerde olurlardı, ta ki 900 yıl önce bakış açılarını kaybedene kadar.

Dünya’dan 45 ışıkyılı uzaklıkta bulunan Trappist-1 sistemi, dördü yaşanabilir bölgede bulunan yedi Dünya boyutunda gezegene ev sahipliği yaptığı için gökbilimcilerin çok ilgisini çekiyor. Bu dış gezegenleri zaten tespit etmiş olsak da, bizi 1.642 yıl daha göremeyecekler.

Trappist-1 Sistemi

Kaltenegger, “Analizimiz, en yakın yıldızların bile, Dünya geçişini görebilecekleri bir bakış noktasında genellikle 1000 yıldan fazla zaman harcadıklarını gösteriyor.” dedi. “Tersinin doğru olduğunu varsayarsak, bu nominal uygarlıkların Dünya’yı ilginç bir gezegen olarak tanımlaması için sağlıklı bir zaman çizelgesi sağlar.”

Bu yılın sonlarında fırlatılacak olan James Webb Uzay Teleskobu, yaşam izlerini aramak için dış gezegenlerin atmosferlerini ayrıntılı gözlemleyecek.

 

KAYNAKÇA & İLERİ OKUMA

Çeviri | ScIence Focus

Başlık Görseli | PIxabay

Trappist-1 Sistemi Görseli | WIkIpedIa

Dünya Farklı Sistemler Tarafından Tespit Edilmiş Olabilir! Read More »

Anti Madde Yıldızlar Galaksimizde Gizleniyor Olabilir

[New Atlas yazısından çevrilmiş ve düzenlenmiştir]
Tarih: 04.05.2021
Yazar: Süleyman Mansuroğlu
Ortalama Okuma Süresi: 6 dakika

Anti madde, normal maddenin garip, şeytani ikizidir ve çoğunlukla evrenimizden sürüldüğü düşünülmektedir. Fakat yine de yıldızlar gibi büyük kümeler halinde gizleniyor olabilirler mi?

Gökbilimciler şimdi bu “anti-yıldızların” kanıtı olabilecek birkaç sinyal tanımladılar ve bunlardan kaçının kendi galaksimizde saklanıyor olabileceğini hesapladılar.

Bilim kurgu gibi görünse de anti madde gerçektir. Basitçe tanımlamak gerekirse, zıt yüke sahip olması dışında olağan madde ile tamamen aynıdır. Bunun anlamı madde ve anti madde parçacıkları karşılaştığında, her ikisinin bir enerji patlamasıyla birbirini imha ettiği anlamına gelir.

En çok kabul gören evren modellerine göre, madde ve anti madde Büyük Patlama ’da oluşmuş olmalı. Ancak, bugün madde kozmosa hakim görünüyor. Anti madde yalnızca eser miktarda, Büyük Hadron Çarpıştırıcısı gibi aletlerde veya doğal süreçte; şimşek, kasırgalar, kozmik ışın etkileşimleri, radyoaktif bozunma veya nötron yıldızları ve kara deliklerden plazma jetleri ile üretilir.

Peki tüm anti madde nereye gitti? Görünüşe göre normal maddeyle temastan neredeyse tamamen silindi. Ama belki de madde – anti madde oranı sandığımız kadar çarpık değildi. Teorik olarak, yakınlarda onu yok edecek normal bir madde olmadığı sürece, anti maddenin yıldızları ve galaksileri ve hatta yaşamı oluşturmaması için hiçbir neden yoktur. Bu ilgi çekici bir olasılık ancak doğrulanması son derece zor. Sonuçta anti-yıldızlar da tıpkı normal olanlar gibi parlayacaktı.

Anti madde kendini farklı şekillerde de gösterebilir. Uzayda, normal maddeden tamamen yoksun bir bölgede anti-yıldızların oluşması oldukça zor olacağından, bilim insanları imkân dahilinde başıboş dolaşan anti maddenin normal maddeyle karşılaşmasından açığa çıkacak gama ışınlarını yakalayarak tespit edebilirler.

Samanyolu üzerinde yer alan yıldız karşıtı gama ışını sinyallerinin konumlarını gösteren görsel.

Gökbilimcilerin de yeni bir çalışmada aradığı şey de işte bu. Ekip, Fermi Uzay Teleskobundan alınan 10 yıllık verilerden, anti-yıldızlardan gelmiş olabilecek 5787 gama ışını analiz etti. Uzayda birçok nesne gama ışınları yayıyor, bu nedenle araştırmacılar o tek bir noktadan gelen gama ışınlarına odaklandılar ve o ışınlar madde – anti madde yok oluşundan beklenene benzer bir ışık spektrumuna sahipti.

Binlerce veri arasından aradıklarına uyan 14 tanesi vardı. Tabi bulunanların anti-yıldız olduklarına kesin bir kanıt değil. Ekip, pulsarlar veya kara delikler gibi daha iyi bilinen gama ışını yayıcıları olma ihtimalinin çok daha yüksek olduğunu kabul ediyor. Ama en azından olasılık var.

Ekip buradan yola çıkarak galaksimizde makul derecede kaç tane anti-yıldız olabileceğine dair bir tahmin elde etti. Eğer anti-yıldızlar normal yıldızlar gibi dağılmışsa ve yükleri dışında herhangi bir farklılıkları yoksa (bunun üzerine çalışmalar hala sürüyor) o zaman gördüğümüz her 300000 yıldızdan birinin anti-yıldız olduğunu keşfettiler.

Bu gerçekten ilgi çekici bir fikir ve daha fazla kanıt için çok çalışılması gerekecek.

 

KAYNAKÇA & İLERİ OKUMA

Çeviri | NewAtlas

Başlık Görseli | ESA

GAMA IŞIN KONUMLARI GÖRSELİ | IRAP

Anti Madde Yıldızlar Galaksimizde Gizleniyor Olabilir Read More »

Avcı’nın Kalbi: Orion Bulutsusu

[Özgün yazıdır]
Tarih: 15.04.2021
Yazar: Melih Kul
Editör: Emre Sezer
Ortalama Okuma Süresi: 3 dakika
Orion Bulutsusu Görseli

Orion bulutsusu avcının belini temsil eden üç yıldızın altında, avcının kılıcını oluşturan üç ışıklı noktadan ikincisi olarak göze çarpar. En parlak bulutsulardan olan Orion yaklaşık 15 ışık yılı çapındadır ve gece çıplak gözle görülebilir. Bu geniş bölge, yeni oluşmakta olan genç yıldızlarla birlikte, gaz ve toz bulutlarından da meydana gelmektedir. Bölgenin bir başka özelliği ise yıldız sayısı bakımından bilinen en zengin yer olmasıdır. Gerçekten, bulutsunun merkezinde 1 ışık yılı küplük hacimde içerisinde 4,000 den fazla yıldız bulunur.

Orion Bulutsusu ‘nun kalbinde, devasa yıldızlardan oluşan “Trapezium (Yamuk) Yıldız Kümesi” bulunur.

Orion Bulutsusu Kalbi Görseli

Orion Bulutsusu’na muhteşem ışıltılı görünümünü kazandıran şey, burada bulunan dev yıldızlardır. Çok genç, sadece birkaç yüz bin yaşında olan, Güneş’ten onlarca kat büyük kütleli O – B tayf türündeki bu yıldızlar, sadece 1.5 – 2 ışık yılı çapında küçük bir alana sıkışmış haldedirler ve muazzam miktarda ışınım yaparlar. Bu büyük miktardaki yıldız ışınımı, bulutsuyu aydınlatmakla kalmaz, gaz ve tozun yavaş yavaş dağılmasına da neden olur. Molekül bulutları da denilen bu gaz, Trapezium’un uzak bölgelerinde yeni yıldızlar oluşturmak üzere sıkışır ve yoğunlaşır. Daha başka bir ifadeyle, dev yıldızlarımız bulutsuyu dağıtırken aynı zamanda yeni yıldızların oluşumuna da neden olmaktalar.

İlk olarak Galileo tarafından keşfedilen, bulutsunun kalbindeki bu “açık küme”de yer alan yıldızlardan dört tanesini küçük bir teleskop veya bir dürbünle ve biraz dikkatle baktığınızda görebilmeniz mümkün. Görece olarak parlak dört yıldızın oluşturmuş olduğu yıldız deseni çok kolay tanımlanabilir. Bu dört yıldız, genellikle artan bahar açısına göre A, B, C ve D olarak tanımlanır. Dört yıldızın en parlak olanı 5,13 kadir büyüklüğüyle C bileşeni yani Teta1 Orionis C’dir. A ve B bileşenlerinin her ikisi de örten çift olarak tanımlanmıştır. Bu görülebilen dört yıldız, aslında birer çift yıldızdır. Zaten Trapezium Kümesi’nde yer alan yıldızların hemen tümünün çift yıldız olduğu keşfedilmiş durumda.

Orion Bulutsusu ve Trapezium Görseli

Trapezium Kümesini oluşturan bu dev kütlelere sahip yıldızlar, önümüzdeki birkaç milyon yıl içinde, yani gökbilim ölçeklerine göre “yarın” diyebileceğimiz bir zaman diliminde birer birer devasa süpernova patlamaları ile karadelik ve nötron yıldızlarına dönüşecekler. Yıldızların muazzam patlamalarının ortalığa saçacağı demir, karbon, silisyum, oksijen, azot gibi ağır elementler ise bir yok oluş değil, çevresindeki bulutsuyu zenginleştirerek yeni başlangıçlara yol açacak.

 

KAYNAKÇA & İLERİ OKUMA

ORİON BULUTSUSU GÖRSELİ | NASA

ORİON BULUTSUSU KALBİ GÖRSELİ | FRANCESCO BATTİSTELLA

ORİON Bulutsusu NEDİR | EarthSKY.org

ORİON Bulutsusu | WIKIPEDIA

Avcı’nın Kalbi: Orion Bulutsusu Read More »

Bir Uğur Böceği Uzay Zamanı Nasıl Büker?

[Viyana Üniversitesi makalesinden çevrilmiş ve düzenlemiştir]
Tarih: 02.04.2021
Yazar: Fuat Bayrakçı
Ortalama Okuma Süresi: 5 dakika

Yerçekimi, doğadaki bilinen tüm kuvvetlerin en zayıfıdır. Ancak yine de günlük yaşamlarımızda en güçlü haliyle mevcuttur. Attığımız her top, düşürdüğümüz her bozuk para ve tüm nesneler Dünya’nın yerçekimi tarafından çekilir. Newton’un evrensel kütle çekim yasası şöyle söyler; Her bir noktasal kütle diğer noktasal kütleyi, ikisini birleştiren bir çizgi doğrultusundaki bir kuvvet ile çeker. Bu kuvvet bu iki kütlenin çarpımıyla doğru orantılı, aralarındaki mesafenin karesi ile ters orantılıdır. Kütle, ayrılmaz bir şekilde yerçekimiyle bağlantılıdır. Böylece kütlesi olan her bir nesne, ne kadar küçük olursa olsun, orantılı bir çekim kuvvetine sahiptir.

Şimdi iki madeni parayı küçük bir aralık ile yan yana yerleştirdiğimizi düşünelim. İki madeni paranın da kütleleri itibari ile bir çekim kuvvetine sahip olması gerektiğini biliyoruz. Fakat bu çekim kuvveti Dünya’nın yerçekimi kuvvetini aşamayacak kadar küçük. Yine de bu madeni paraların arasındaki çekim kuvvetini ölçmek mümkün mü? İşte burada bir sorun var. Dünya’nın muazzam kütle çekimi, yüzeyindeki diğer iki şey arasındaki etkiyi ortadan kaldırarak bilim adamlarının kuvveti küçük ölçeklerde incelemesini neredeyse imkansız hale getiriyor.

1 sentlik madeni para ile boyut karşılaştırmasında kullanılan altın top. Einstein’ın genel görelilik kuramına göre, her kütle uzay-zamanı büker.

CAVENDISH DENEYİ

Viyana Üniversitesi ve Avusturya Bilimler Akademisi’nden Markus Aspelmeyer ve Tobias Westphal tarafından yönetilen bir kuantum fizikçi ekibi şimdi bu kuvvetleri laboratuvarda ilk kez gösterdi. Araştırmacılar, bunu yapmak için, 18. yüzyılın sonunda Henry Cavendish tarafından yapılan ünlü bir deneyden yararlandılar.

Deneydeki fikir oldukça basit. Fikir, düzeneğin Dünya’nın çekim kuvveti yönünde aşağıya doğru “salınımının” olmamasıdır. Ancak yatay olarak serbestçe dönebilir. Bu nedenle çubuğun uçlarındaki ağırlıkların yanına daha büyük bir ağırlık yerleştirilir böylece iki ağırlık birbirini çeker ve çubuğu çok az döndürür. Çubuğun hareket ettiği mesafeyi ve destek telinin bükülmesini ölçerek, iki ağırlık arasındaki yerçekimi kuvveti ölçülebilir.

Minik sarkaç, ince bir cam elyaftan asılır ve milimetre büyüklüğündeki altın topun yerçekimi kuvvetini hisseder.

Yeni çalışma için, Viyana Üniversitesi ve Avusturya Bilimler Akademisi’nden araştırmacılar bu deneyi küçülttü. Henry Cavendish deneyinde her biri 160 kg ağırlığındaki ahşap kirişler ve kurşun bilyeler kullanmıştı. Deneyin yeni versiyonunda araştırmacılar 4 cm uzunluğunda cam çubuk ve 2 mm genişliğinde sadece 90 miligram ağırlığında (yaklaşık bir uğur böceği ağırlığında) altın küreler kullandılar.

Deneyde yer alan araştırmacılardan biri olan Jeremias Pfaff, “Altın küreyi ileri geri hareket ettirerek zamanla değişen bir yerçekimi alanı yaratıyoruz” diyor. “Bu, burulma sarkacının o belirli uyarma frekansında salınmasına neden olur.

Hareket daha sonra bir lazerle ölçüldü ve laboratuvarda ölçülen en küçük yerçekimi kuvvetini işaretleyerek milimetrenin sadece birkaç milyonda biri olduğu bulundu. Buradaki zorluk, hareket üzerindeki diğer etkileri olabildiğince küçük tutmaktır.

“Einstein’a göre, kütle çekim kuvveti, diğer kütlelerin hareket ettiği uzay zamanı büken kütlelerin bir sonucudur.” diyor çalışmanın ilk yazarı Tobias Westfalen. “Öyleyse aslında burada ölçtüğümüz şey, bir uğur böceğinin uzay-zamanı nasıl büktüğü.”

KAYNAKÇA & İLERİ OKUMA

Çeviri | VİYANA ÜNİVERSİTESİ

MAdeni para görseli | Coin © Tobıas Westphal / Arkıtek Scıentıfıc

Sarkaç görseli | Labor © Tobias Westphal

Başlık Görseli | Pexels / Lisa Fotios

 

Bir Uğur Böceği Uzay Zamanı Nasıl Büker? Read More »

Scroll to Top