Notit

Zaman

Hayvanlar Zamanı Bizden Farklı Mı Algılıyor?

[Science Focus yazısı çevirisidir.]
Tarih: 06.06.2021
Yazar: Fuat Bayrakçı
Ortalama Okuma Süresi: 3 dakika

Zaman algısı, beynin gelen bilgiyi ne kadar hızlı işleyebildiğine bağlıdır. Bilim adamları, hayvanlara önce yavaş başlayan daha sonra hızlanan ışık atımlarını göstererek bunu ölçmeye çalıştılar. Işık o kadar hızlı yanıp sönüyor ki, sanki sürekli yanıyormuş gibi görünüyor. Dikkatlice yerleştirilmiş beyin elektrotları, bu anın ne zaman gerçekleştiğini ortaya çıkarabilir.

Araştırmalar, daha hızlı metabolizmaya sahip daha küçük hayvanların, daha tıknaz, daha yavaş hayvanlara göre daha yüksek titreşen ışık frekanslarını algılayabildiğini gösteriyor. Tıpkı The Matrix’teki Neo’nun mermilerden kaçması gibi, hareketler ve olaylar daha yavaş gelişiyor gibi görünebilir.

Görünüşe göre semenderler ve kertenkeleler zamanı kedi ve köpeklerden daha yavaş algılıyor. Ve bu, sineklerin yuvarlanan gazetelerden kaçmak için çileden çıkaran yeteneklerini açıklamaya yardımcı olsa da, önemli bir soruyu da gündeme getiriyor: neden?

Evrimsel bir bakış açısıyla, hızlı tepki vermesi gereken hayvanlar için zamanı daha iyi çözünürlüklerde algılamak mantıklıdır. Ancak asıl dikkat çekici olan şey, bazı hayvanların zaman deneyimlerini ihtiyaçlarına göre artırıp azaltıyor olmasıdır. Örneğin, bazı kılıç balıkları avlanmaya başlamadan önce beyne giden kan akışını hızlandırır, zaman algılarını yavaşlatır ve saniyede işleyebilecekleri kare sayısını artırır. Böylece daha hızlı tepki vermelerine yardımcı olur.

Bir başka yerde ise, fareler üzerinde yapılan çalışmalar, beyindeki dopamin üreten nöronları uyararak zaman algısının hızlandırılabileceğini göstermiştir.

Bu bulguların, dikkat eksikliği hiperaktivite bozukluğu (DEHB) gibi dopamine bağlı bozuklukları olan kişiler için derin etkileri vardır. Burada dopaminde bir azalma var, bu yüzden hastalar zamanı daha yavaş algıladıkları için belki de dürtüsel olabilirler.

Tersine, dopamin seviyelerini artıran ilaçlar ise zaman algısını hızlandırdıkları için faydalı olabilirler. Ancak, bu sadece çalışan bir hipotez.

 

KAYNAKÇA & İLERİ OKUMA

Çeviri | Scıence Focus

Başlık GÖrseli | PIXABAY – GUNDULA VOGEL

Hayvanlar Zamanı Bizden Farklı Mı Algılıyor? Read More »

Bir Uğur Böceği Uzay Zamanı Nasıl Büker?

[Viyana Üniversitesi makalesinden çevrilmiş ve düzenlemiştir]
Tarih: 02.04.2021
Yazar: Fuat Bayrakçı
Ortalama Okuma Süresi: 5 dakika

Yerçekimi, doğadaki bilinen tüm kuvvetlerin en zayıfıdır. Ancak yine de günlük yaşamlarımızda en güçlü haliyle mevcuttur. Attığımız her top, düşürdüğümüz her bozuk para ve tüm nesneler Dünya’nın yerçekimi tarafından çekilir. Newton’un evrensel kütle çekim yasası şöyle söyler; Her bir noktasal kütle diğer noktasal kütleyi, ikisini birleştiren bir çizgi doğrultusundaki bir kuvvet ile çeker. Bu kuvvet bu iki kütlenin çarpımıyla doğru orantılı, aralarındaki mesafenin karesi ile ters orantılıdır. Kütle, ayrılmaz bir şekilde yerçekimiyle bağlantılıdır. Böylece kütlesi olan her bir nesne, ne kadar küçük olursa olsun, orantılı bir çekim kuvvetine sahiptir.

Şimdi iki madeni parayı küçük bir aralık ile yan yana yerleştirdiğimizi düşünelim. İki madeni paranın da kütleleri itibari ile bir çekim kuvvetine sahip olması gerektiğini biliyoruz. Fakat bu çekim kuvveti Dünya’nın yerçekimi kuvvetini aşamayacak kadar küçük. Yine de bu madeni paraların arasındaki çekim kuvvetini ölçmek mümkün mü? İşte burada bir sorun var. Dünya’nın muazzam kütle çekimi, yüzeyindeki diğer iki şey arasındaki etkiyi ortadan kaldırarak bilim adamlarının kuvveti küçük ölçeklerde incelemesini neredeyse imkansız hale getiriyor.

1 sentlik madeni para ile boyut karşılaştırmasında kullanılan altın top. Einstein’ın genel görelilik kuramına göre, her kütle uzay-zamanı büker.

CAVENDISH DENEYİ

Viyana Üniversitesi ve Avusturya Bilimler Akademisi’nden Markus Aspelmeyer ve Tobias Westphal tarafından yönetilen bir kuantum fizikçi ekibi şimdi bu kuvvetleri laboratuvarda ilk kez gösterdi. Araştırmacılar, bunu yapmak için, 18. yüzyılın sonunda Henry Cavendish tarafından yapılan ünlü bir deneyden yararlandılar.

Deneydeki fikir oldukça basit. Fikir, düzeneğin Dünya’nın çekim kuvveti yönünde aşağıya doğru “salınımının” olmamasıdır. Ancak yatay olarak serbestçe dönebilir. Bu nedenle çubuğun uçlarındaki ağırlıkların yanına daha büyük bir ağırlık yerleştirilir böylece iki ağırlık birbirini çeker ve çubuğu çok az döndürür. Çubuğun hareket ettiği mesafeyi ve destek telinin bükülmesini ölçerek, iki ağırlık arasındaki yerçekimi kuvveti ölçülebilir.

Minik sarkaç, ince bir cam elyaftan asılır ve milimetre büyüklüğündeki altın topun yerçekimi kuvvetini hisseder.

Yeni çalışma için, Viyana Üniversitesi ve Avusturya Bilimler Akademisi’nden araştırmacılar bu deneyi küçülttü. Henry Cavendish deneyinde her biri 160 kg ağırlığındaki ahşap kirişler ve kurşun bilyeler kullanmıştı. Deneyin yeni versiyonunda araştırmacılar 4 cm uzunluğunda cam çubuk ve 2 mm genişliğinde sadece 90 miligram ağırlığında (yaklaşık bir uğur böceği ağırlığında) altın küreler kullandılar.

Deneyde yer alan araştırmacılardan biri olan Jeremias Pfaff, “Altın küreyi ileri geri hareket ettirerek zamanla değişen bir yerçekimi alanı yaratıyoruz” diyor. “Bu, burulma sarkacının o belirli uyarma frekansında salınmasına neden olur.

Hareket daha sonra bir lazerle ölçüldü ve laboratuvarda ölçülen en küçük yerçekimi kuvvetini işaretleyerek milimetrenin sadece birkaç milyonda biri olduğu bulundu. Buradaki zorluk, hareket üzerindeki diğer etkileri olabildiğince küçük tutmaktır.

“Einstein’a göre, kütle çekim kuvveti, diğer kütlelerin hareket ettiği uzay zamanı büken kütlelerin bir sonucudur.” diyor çalışmanın ilk yazarı Tobias Westfalen. “Öyleyse aslında burada ölçtüğümüz şey, bir uğur böceğinin uzay-zamanı nasıl büktüğü.”

KAYNAKÇA & İLERİ OKUMA

Çeviri | VİYANA ÜNİVERSİTESİ

MAdeni para görseli | Coin © Tobıas Westphal / Arkıtek Scıentıfıc

Sarkaç görseli | Labor © Tobias Westphal

Başlık Görseli | Pexels / Lisa Fotios

 

Bir Uğur Böceği Uzay Zamanı Nasıl Büker? Read More »

Her Şeyi Yiyen Gargantua-2

[Özgün Yazıdır]
Tarih: 13.02.2021
Yazar: Emre Sezer
Ortalama Okuma Süresi: 7 dakika

        Gargantua’nın ne kadar gerçekçi bir kara delik olduğunu analiz edebilmek için önce gerçek kara deliklerin özelliklerini yazının ilk bölümünde anlatmıştım. Şimdi Gargantua’yı bu özelliklerle karşılaştıracağız.

Gargantua İle Galaksiler Arası Yolculuk

        Interstellar evreninde Gargantua’nın Satürn yanında olduğunu ve başka bir galaksiye çıktığını biliyoruz. Bu özelliğinden dolayı Gargantua için “solucan deliği” deniyor. Solucan deliği, kara deliğe giren cisimlerin evrenin başka yerlerinden çıkmasına olanak sağlayan yolu kısaltan geçitlerdir. Günümüzde kara delikler üzerinde yapılan çalışmalar ile biliyoruz ki kara delikler yüksek çekim gücüne sahip astro fizik kütleleridir ve hacimleri küçük olduğu için çektikleri her maddeyi içlerinde parçalayarak istiflerler. Bu yüzden Gargantua’nın bu özelliği bilimsel olarak mümkün değildir! Eğer mümkün olsaydı bu yolculuk için zarar görmeyecek ileri teknolojiler geliştirmemiz gerekecektir. Interstaller evrenindeki Gargantua içerisinde seyahat eden Endurance uzay aracı da bu teknolojiye sahip kabul edilmiştir.

Gargantua’nın Anatomisi

Gargantua-1

        Gargantua 100 milyon Güneş kütlesinde ve olay ufku da buna bağlı olarak yaklaşık 1 milyon kilometre civarında. Ortalama Dünya’nın Güneş etrafındaki yörüngesine eşit oluyor. Kara deliklerin yarıçapı, olay ufkunun çevre uzunluğunun 2 pi kadarıdır. Bu hesaba göre Gargantua gibi fiziksel özelliklere sahip kara delik mümkün olabilir!                                                                        

Gargantua-2

        Gargantua’nın zamanı Interstellar’da olduğu gibi aynı oranda yavaşlatması için çok hızlı dönmesi gerekir. Bu hızı Tars’ın ,Interstaller evrenindeki robot, 1 saatte tamamlamasını referans alıp üstteki bilgilerle hesaplarsak ışık hızına çok yakın dönmesi gerektiği sonucuna ulaşıyoruz. Bu Gargantua için maksimum dönüş hızı. Einstein’in hız sınırını geçmediğinden bir kara delik için bu dönüş hızı mümkündür! Thorne da bu olayı “mümkün ancak muhtemel değil.” olarak özetliyor.

Gargantua’nın Görünüşü

Gargantua tasarlandığında daha önce bir kara delik fotoğrafı çekilmemişti ama kara deliklerden veriler alınıyor üzerine çalışmalar yapılıyordu. Bu bilgiler ışığında Thorne yaptığı çalışmalar ile Gargantuayı tasarladı. 2019 yılında EHT teleskobunu ilk kez bir kara delik fotoğrafı çekmeyi başardı. Gargantuaya dışarıdan baktığımızda etrafında gördüğümüz ışık şekli Gargantua’nın olay ufkunun çevresinde dolanan ve Gargantua’nın etkisinden kaçabilen fotonlardır. Benzer görüntüğü EHT teleskobunun fotoğrafında da görebiliyoruz. Gargantua’nın bu görünüşü mümkündür!

Gargantua | Interstellar (solda) & İlk Kara Delik Resmi | EHT Telecope (sağda)

        Zamanda yoluluk, geçmişi değiştirmek, farklı boyutlar gibi sadece kara deliği değil diğer etkenlere de bağlı olan diğer konulara, sadece Gargantua’yı incelediğim için, bu yazıda değinmeyeceğim. Bir kara delik olarak Gargantua için Interstellar bilimesel temeller üzerine kurulmuş da olsa neticede kurgudur ve kurguda hikayenin ilerlemesi için bazı şeyler “öyle” kabul edilir. Bu konu ile alakalı Interstellar’ın bilimsel danışmanı Thorne “Raslantı evrimin ilk yapı taşıdır.” diyor.  Yine de Interstellar bilimsel analizleri çok iyi yapmış ve hikaye boyunca her detayı bu analizlerle planlamış bir kurgudur diyebilirim. 

 

KAYNAKÇA & İLERİ OKUMA

HER ŞEYİ YİYEN GARGANTUA-1 | İLK YAZI

SOLCUAN DELİĞİ | WİKİPEDİA

GARGANTUA HAKKINDA BİLGİLER | THE SCİENCE OF INTERSTELLAR

KARA DELİK GÖRSELİ | EHT COLLABORATION

GARGANTUA GÖRSELLERİ | INTERSTELLAR

Her Şeyi Yiyen Gargantua-2 Read More »

Her Şeyi Yiyen Gargantua-1

[Özgün Yazıdır]
Tarih: 06.02.2021
Yazar: Emre Sezer
Ortalama Okuma Süresi: 6 dakika

        Kara delik öyle bir çırpıda geçilecek bir konu değil ama içinde kafa kurcalayan bir yer var ki o da kurgularda gördüklerimizin ne kadar bilim olduğu…  

Öncelikle;

“Kara delik, astrofizikte, çekim alanı her türlü maddesel oluşumun ve ışınımın kendisinden kaçmasına izin vermeyecek derecede güçlü olan, kütlesi büyük bir kozmik cisimdir.”

        Evet bu kabul ettiğimiz tanımın ufacık giriş bölümüydü. İşin bir de kurgu bölümü var ki çoğumuz “kara delik” ismini ilk orda duymuşuzdur. Bu yazıda “Interstellar” filminde yer alan “Gargantua” olarak adlandırılan kara delik üzerinden kara deliğin ne olduğunu Gargantua’nın ne kadar gerçek olabileceğini anlatmaya çalışacağım. Fazla uzun olmaması için iki bölüme böldüğüm “Her Şeyi Yiyen Gargantua” yazımın bu bölümünde kara delikler hakkında bilimin ne dediğinden bahsedeceğim. Yazıyı daha basit ve anlaşılır tutmak için formüllere ve diğer ayrıntılara burada değinmeden daha basit bir şekilde anlatmaya çalışacağım.

Interstellar evreninde Gargantua bir geçit gibi bizi A noktasından B noktasına götürdüğünü ve etrafına zamanda büyük bir sapmaya neden olduğunu biliyoruz. 

Peki bu fikre nereden kapıldılar? İçine giren olmadı ya da içinden çıkagelen biri olmadı. Hatta Interstellar yazıldığı yıl daha önce teleskoplarla bile bize kendisini gösteren bir kara delik de olmamıştı. 

        Interstellar’ın yazarları bilimle olabildiğince yakın bir kurgu ortaya koymak istiyorlardı. Bunun için Kaliforniya Teknoloji Enstitüsü’nde profesör olan kütleçekim dalgaları alanında yaptığı çalışmalarla nobel ödülü kazanan Kip Thorne’dan bilimsel danışmanlık aldılar.

Gargantua Görseli
Gargantua Görseli

        Bu noktada başa geri dönelim Kara deliklere tekrardan bakalım. Kara delikler, yıldızların içerisinde gerçekleşen füzyon tepkimesi bitip helyuma dönüşecek hidrojenleri kalmadığı yani ömürlerini tamamladıktan sonra içlerine çökmesi durumunda oluşan büyük kütleli ama küçük hacimli astrofizik cisimlerdir. Çekim kuvvetleri güçlü ve olay ufukları geniş olduğu için olay ufkundan daha yakında olan cisimleri kendilerine güçlü bir şekilde çekerler. Bunu daha kolay anlamak için 1,889,500X10^24 kg kütleye sahip olan Güneş’in çekirdeğinde üretilen kütlesi 0 kabul edilen, ışık hızıyla hareket eden fotonlar bile sadece 10,000,000 yıl sonra güneşin yüzeyine ulaşabiliyorlar. Eğer Güneş bir kara delik olsaydı, ki bunun olması için çapının 3 km olması gerekirdi, fotonlar dahi yüzeye ulaşamayacaktır. Böylece dışarıya ışık yayamayacağı için karanlık kalacaktı. Kara delikler de isimlerini bu özelliklerinden alıyorlar. 

       Kara deliklerin bir başka özelliği de yüksek kütlesiyle uzay-zamanı bükmesidir. Kara deliğe olay ufkundan daha fazla yaklaşırsanız artık ondan kaçamazsınız çünkü bunun için ışık hızından daha hızlı hareket etmeniz gerekir. Kara deliğin içerisinde düştüğünüzde dikkat etmeniz gereken diğer kara delik özelliği de tekilliktir. Tekillik, kara delik gibi yüksek kütlesel astrofizik cisimlerinin meydana getirdiği uzay-zaman kurallarının çalışmadığı alanlardır. 

Yazımın ikinci bölümünde kara delik hakkında bilimden öğrendiğimiz bu özelliklerinin Interstaller’da nasıl işlendiğini inceleyeceğiz.

 

KAYNAKÇA & İLERİ OKUMA

KARA DELİK | WIKIPEDIA

GUNES ENERJİSİNİN KAYNAĞI | TUBITAK

NÜKLEER FÜZYON | WIKIPEDIA

DÜNYA GÜNEŞ KARŞILAŞTIRMASI | NASA

HIGGS BOZONU | Citation: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004)

HIGH ENERGY PHYSICS | CORNELL UNIVERSITY

OLAY UFKU | WIKIPEDIA

TEKILLIK | KARISTAD UNIVERSITY

BAŞLIK GÖRSELİ | EHT COLLABORATION
GARGANTUA GÖRSELİ | INTERSTALLER

Her Şeyi Yiyen Gargantua-1 Read More »

Şimdiye Kadarki En Kısa Zaman Aralığı Ölçüldü

[New Atlas yazısından çevrilmiş ve düzenlenmiştir]
Tarih: 02.01.2021/strong>
Yazar: Fuat Bayrakçı
Ortlama Okuma Süresi: 5 dakika

        Almanya’daki fizikçiler şimdiye kadar kaydedilen en kısa zaman aralığını ölçtüler. Ekip, bir ışık fotonunun bir hidrojen molekülünün uzunluğu boyunca hareket etmesi için geçen süreyi ölçtü ve bunun saniyenin yalnızca seksilyonda birinde oluştuğunu buldu. Araştırmacılar ultra kısa ölçümleri PETRA III hızlandırıcı kullanarak Hamburg, Almanya’daki DESY (ALMAN ELEKTRON SENKROTRONU) ‘de yaptılar.

        Mikroskobik dünya birçok gizem içerir, sadece her şey çok küçük olduğu için değil, her şeyin inanılmaz derecede hızlı gerçekleştiği için. Bu ölçekte, bir saniye sonsuzluk gibi görünebilir – kimyasal bağlar, saniyenin katrilyonda biri olan femtosaniye cinsinden oluşur ve kopar. Son birkaç on yıldır, bu ultra kısa olayları ölçmek için femtosaniye lazer darbelerini kullanabildik.

        Ancak yeni ölçüm çok daha fazla yakınlaştırarak bir femtosaniyenin kıyaslandığında yavaş görünmesine neden oluyor. Araştırmacılar, bir fotonun bir hidrojen molekülünü yaklaşık 247 zeptosaniye içinde geçeceğini buldular.

        Referans olarak, bir zeptosaniye bir femtosaniyeden milyon kat daha kısadır veya saniyenin seksilyonda biri kadardır. Bu 0.0000000000000000000001 saniyedir. Bir saniyedeki zeptosaniye sayısı 31.7 trilyon yıldaki saniye sayısına eşittir, bu evrenin şu ana kadar var olduğu süreden bile 2.365 kat daha uzundur. Bir zeptosaniyenin ne kadar kısa olduğunu abartmanın bir yolu yok.

        Bu çığır açan ölçüm, Frankfurt Goethe Üniversitesi, DESY hızlandırıcısı ve Fritz-Haber Enstitüsü’ndeki araştırmacılar tarafından yapıldı. Aslında zeptosaniye ölçeğinde yapılan ilk ölçüm değil bu onur 2016’da bir helyum atomuna bir foton çarptıktan sonra bir elektronu fırlatmanın 850 zeptosaniye sürdüğünü keşfeden bir ekibe ait. Bu, yeni ölçümün önceki kayıttan yaklaşık 3,4 kat daha kısa olduğu anlamına gelir.

        Yeni deney benzerdi. Ekip, bir hidrojen (H2) molekülünü belirli bir enerji seviyesinde X ışınları ile ışınladı ve her iki elektronu da molekülün dışına fırlattı. Araştırmacılar, iki elektronun girişim modellerini ölçerek, fotonun moleküldeki ilk hidrojen atomuna, ardından ikinciye ulaşmasının ne kadar sürdüğünü kesin olarak hesaplayabildiler. Görünüşe göre cevap 247 zeptosaniye kadar.

        Çalışmanın baş yazarı Reinhard Dörner, “Bir moleküldeki elektron kabuğunun aynı anda her yerde ışığa tepki vermediğini ilk kez gözlemledik” diyor. “Zaman gecikmesi, molekül içindeki bilgi yalnızca ışık hızında yayıldığı için oluşur.” Araştırma, Science dergisinde yayınlandı.

 

 

KAYNAKÇA & İLERİ OKUMA 

araştırma | Goethe Üniversitesi Frankfurt

ÇEVİRİ | NEW ATLAS

başlık görseli | new atlas

Şimdiye Kadarki En Kısa Zaman Aralığı Ölçüldü Read More »

Scroll to Top